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Recently, in this journal an interesting study was published [1] which developed
a procedure that allows the determination of the location of the nodes and
anti-nodes of a complicated structure. The basis of the method is to attach a virtual
element (lumped mass or a grounded spring) to the system and to plot the
frequency curves of the combined system against the location of the virtual
element. It was shown that for virtual lumped mass, the nodes and anti-nodes
correspond to the local maxima and minima of the frequency curves, respectively,
while for the virtual spring, they correspond instead to the minima and maxima
of the frequency curves.

The method is illustrated by examining a uniform cantilevered Bernoulli–Euler
beam with various lumped attachments. It is stated, however, that the method is
sufficiently general such that it can be easily extended to locate the nodes and
anti-nodes of other combined dynamical systems. The aim of this letter is to make
a positive comment on this interesting study and to strenghten the authors’
statement on the general applicability of their method by giving an example from
the field of longitudinally vibrating rods restrained by a linear spring in-span. In
an earlier study, the authors also considered a longitudinally vibrating rod,
carrying a lumped mass in-span [2]. They applied the virtual mass approach. Here,
in contrast, the virtual grounded spring approach will be employed.

The ‘‘original’’ mechanical system to be investigated is shown in Figure 1(a).
It consists of a fixed–free longitudinally vibrating elastic rod of length L and axial
rigidity EA which is restrained by a linear spring of spring coefficient k. The mass
per unit length and location of the spring attachment point are m and hL,
respectively. The aim is to locate the nodes and the anti-nodes of this ‘‘original’’
system. To this end, according to the virtual spring approach, a virtual grounded
spring of spring coefficient k1 is attached to the system as in Figure 1(b) and then,
the frequency curves of the resulting ‘‘combined’’ system are plotted against the
constraint location parameter h1. The nodes and anti-nodes of the original system
correspond to the local minima and maxima of these curves. Unlike those in
reference [1], the calculations here will be based on expressions of the ‘‘exact’’
frequency equations which are derived and given in the appendix.

Figures 2 and 3 illustrate the exact mode shapes of the original system and the
dimensionless natural frequency curves of the combined system as a function of
the location parameter of the virtual spring attachment point h1. For brevity, only
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the second and third dimensionless frequency curves b�2(h1) and b�3(h1) are shown,
where ak = h=0·5 are chosen for the data of the original system in Figure 1(a).
In both figures, the three values for the dimensionless virtual spring stiffness
parameter are ak1 =0·1, 0·5 and 1·0. The first three roots of the frequency equation
(A9) are b�1 =1·715507, b�2 =4·764809 and b�3 =7·885674, respectively, which
represent the dimensionless eigenfrequency parameters of the original system.
Inspection of Figures 2 and 3 validates the results reached and the observations
made from the figures in reference [1] that use other vibrating systems.

From the present figures it can be observed that the locations of the local
minima of the frequency curves of the combined system correspond to the nodes
of the original system, and that they are independent of the stiffness parameter
ak1 of the virtual spring. Furthermore, the locations of the local maxima of the
frequency curves of the combined system which are nearly invariant of ak1

correspond to the anti-nodes of the original system. It is evident that as ak1

increases, the frequency curves shift upwards becuase the overall stiffness of the
combined system becomes larger.

From Table 1, it can be clearly seen how well the virtual grounded spring
approach locates the nodes and anti-nodes of the original system.

Figure 1(a). Original system: a fixed–free longitudinally vibrating elastic rod, restrained at x= hL
by a linear spring of spring coefficient k. (b) Combined system: original system with a virtual
grounded spring attached at x= h1L, the spring coefficient of which is k1.
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Figure 2(a). Exact second mode shape for the original system in Figure 1(a). (b) The
corresponding frequency curves as a function of the location parameter of the attachment point h1

of the virtual spring. ——, ak1=0·1,----, 0·5, . . . . 1·0.
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Figure 3(a). Exact third mode shape for the original system in Figure 1(a). (b) As in Figure 2(b).
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T 1

Location of the nodes and anti-nodes of the system in
Figure 1(a), for h= ak =0·5, determined exactly and by
using the virtual grounded spring approach. The subscripts
n and an denote the ‘‘node’’ and ‘‘anti-node’’, respectively,
while the subscripts e and vs correspond to ‘‘exact’’ and
‘‘virtual spring’’. Above results are obtained by setting
ak1 =0·1, where ak1 represents the dimensionless stiffness

coefficient of the virtual grounded spring

Mode number x̄e
n x̄vs

n x̄e
an x̄vs

an

2 0·670 0·670 0·330 0·330
3 0·398 0·398 0·199 0·200

0·801 0·801 0·602 0·602


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

The equations of motion of the three rod-portions of the combined system are
the well-known partial differential equations

EA
12ui (x, t)

1x2 =m
12ui (x, t)

1t2 (i=1, 2, 3), (A1)

where u1(x, t), u2(x, t) and u3(x, t) denote the axial displacements of the rod
portions 0E xE h1L, h1LE xE hL and hLE xEL, respectively. The corre-
sponding boundary and matching conditions are,

u1(0, t)=0, u1(h1L, t)= u2 (h1L, t),

EAu'1 (h1L, t)−EAu'2 (h1L, t)+ k1u1(h1L, t)=0,

u2(hL, t)= u3(hL, t),

EAu'2 (hL, t)−EAu'3 (hL, t)+ ku2(hL, t)=0, u'3 (L, t)=0, (A2)
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where primes denote partial derivatives with respect to the position co-ordinate x.
Using the standard method of separation of variables, one assumes

ui (x, t)=Ui (x) cos vt (i=1, 2, 3), (A3)

where Ui (x) are the amplitude functions and v is the unknown eigenfrequency of
the combined system.

Substitution of these into equations (A1) results in

U0i (x)+ b2Ui (x)=0 (i=1, 2, 3), (A4)

where b2 =mv2/EA.
Substituting equations (A3) into (A2) yields

U1(0)=0, U1(h1L)=U2(h1L),

EAU'1 (h1L)−EAU'2 (h1L)+ k1U1(h1L)=0, U2(hL)=U3(hL),

EAU'2 (hL)−EAU'3 (hL)+ kU2(hL)=0, U'3 (L)=0. (A5)

The general solutions of equation (A4) are simply

Ui (x)=Ci sin bx+Di cos bx, (i=1, 2, 3), (A6)

Ci and Di being six integration constants to be evaluated via conditions (A5).
The application of these conditions to the solutions (A6) yields a set of six
homogeneous equations for C1, . . . . . . , D3. A non-trivial solution of this set of
equations is possible only if the characteristic determinant of the coefficients
vanishes. This condition leads, considering that D1 vanishes, to the following
frequency equation:
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sin h1b� −sin h1b� −cos h1b� 0 0

b� cos h1b�+ ak1 sin h1b� −b� cos h1b� b� sin h1b� 0 0

0 sin hb� cos hb� −sin hb� −cos hb� =0, (A7)

0 b� cos hb�+ ak sin hb� −(b� sin hb�− ak cos hb�) −b� cos hb� b� sin hb�
0 0 0 cos b� −sin b�
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where
b�= bL, ak =

k
EA/L

, ak1 =
k1

EA/L
. (A8)

It is important to note that equation (A7) is valid for h1 E h. In the case of h1 q h,
in the determinant, h1 and ak1 are to be replaced by h and ak , respectively, and vice
versa.

Having obtained the frequency equation of the more complex system in Figure
1(b), it is an easy matter to show that the frequency equation and the mode shapes
of the simpler system in Figure 1(a) are given by:

b� cos b�+ ak sin hb� cos [(1− h)b�]=0 (A9)

and

U1(x̄)= sin b�x̄ (0E x̄E h), (A10)

U2(x̄)=01+
ak

2b� sin 2hb�1 sin b�x̄−
ak

b� sin2 hb� cos b�x̄ (hE x̄E 1),

where x̄= x/L is introduced.
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